Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38474509

RESUMO

We provide promising computational (in silico) data on phytochemicals (compounds 1-10) from Arabian Peninsula medicinal plants as strong binders, targeting 3-chymotrypsin-like protease (3CLPro) and papain-like proteases (PLPro) of SARS-CoV-2. Compounds 1-10 followed the Lipinski rules of five (RO5) and ADMET analysis, exhibiting drug-like characters. Non-covalent (reversible) docking of compounds 1-10 demonstrated their binding with the catalytic dyad (CYS145 and HIS41) of 3CLPro and catalytic triad (CYS111, HIS272, and ASP286) of PLPro. Moreover, the implementation of the covalent (irreversible) docking protocol revealed that only compounds 7, 8, and 9 possess covalent warheads, which allowed the formation of the covalent bond with the catalytic dyad (CYS145) in 3CLPro and the catalytic triad (CYS111) in PLPro. Root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), and radius of gyration (Rg) analysis from molecular dynamic (MD) simulations revealed that complexation between ligands (compounds 7, 8, and 9) and 3CLPro and PLPro was stable, and there was less deviation of ligands. Overall, the in silico data on the inherent properties of the above phytochemicals unravel the fact that they can act as reversible inhibitors for 3CLPro and PLPro. Moreover, compounds 7, 8, and 9 also showed their novel properties to inhibit dual targets by irreversible inhibition, indicating their effectiveness for possibly developing future drugs against SARS-CoV-2. Nonetheless, to confirm the theoretical findings here, the effectiveness of the above compounds as inhibitors of 3CLPro and PLPro warrants future investigations using suitable in vitro and in vivo tests.


Assuntos
COVID-19 , Plantas Medicinais , Peptídeo Hidrolases , Simulação de Acoplamento Molecular , SARS-CoV-2 , Papaína , Simulação de Dinâmica Molecular , Compostos Fitoquímicos , Antivirais , Inibidores de Proteases
2.
Artigo em Inglês | MEDLINE | ID: mdl-38423706

RESUMO

Avanafil is an oral medication used to treat erectile dysfunction (ED). As a phosphodiesterase type 5 (PDE5) inhibitor, it functions by inhibiting the PDE5 enzyme, which ultimately results in increased levels of cyclic guanosine monophosphate (cGMP) and improved blood flow to the penis. Approved by the FDA in 2012, avanafil is recognised for its rapid onset of action, short half-life, and favourable side-effects profile. While it has been explored for other potential therapeutic applications, its current approved use is limited to ED and should be used as prescribed by a medical professional. This chapter provides a comprehensive review of avanafil, encompassing its nomenclature, physicochemical properties, methods of preparation, and identification. Various techniques for analysing avanafil, such as electrochemical analysis, spectrophotometric, spectrofluorimetric, and chromatographic techniques, are discussed. The pharmacology of avanafil, including its pharmacokinetics and pharmacodynamics, is also examined.


Assuntos
Disfunção Erétil , Masculino , Humanos , Disfunção Erétil/tratamento farmacológico , Inibidores da Fosfodiesterase 5/farmacologia , Inibidores da Fosfodiesterase 5/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Hemodinâmica
3.
Artigo em Inglês | MEDLINE | ID: mdl-38423710

RESUMO

Ponatinib is a prescription medication used to treat a rare form of blood cancer called Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) and chronic myeloid leukemia (CML) that is resistant to other treatments. It belongs to a class of drugs called tyrosine kinase inhibitors, which work by blocking abnormal proteins that promote the growth of cancer cells. In this chapter, the synthesis methods and physicochemical properties of ponatinib were reviewed, besides the characterization of the ponatinib structure using different techniques such as elemental analysis, IR, UV, (1H and 13C) NMR, MS, and XRD. Furthermore, the compendial method for analysis of ponatinib was not found, while the literature review of a non-compendial method for analysis of ponatinib, such as spectroscopic, chromatographic, and immunoassay methods, was covered. Moreover, pharmacology and biochemistry were surveyed in the pharmacokinetic and pharmacodynamic studies.


Assuntos
Antineoplásicos , Imidazóis , Leucemia Mielogênica Crônica BCR-ABL Positiva , Piridazinas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Resistencia a Medicamentos Antineoplásicos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico
4.
Viruses ; 15(11)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38005857

RESUMO

COVID-19, a disease caused by SARS-CoV-2, has caused a huge loss of human life, and the number of deaths is still continuing. Despite the lack of repurposed drugs and vaccines, the search for potential small molecules to inhibit SARS-CoV-2 is in demand. Hence, we relied on the drug-like characters of ten phytochemicals (compounds 1-10) that were previously isolated and purified by our research team from Saudi medicinal plants. We computationally evaluated the inhibition of RNA-dependent RNA polymerase (RdRp) by compounds 1-10. Non-covalent (reversible) docking of compounds 1-10 with RdRp led to the formation of a hydrogen bond with template primer nucleotides (A and U) and key amino acid residues (ASP623, LYS545, ARG555, ASN691, SER682, and ARG553) in its active pocket. Covalent (irreversible) docking revealed that compounds 7, 8, and 9 exhibited their irreversible nature of binding with CYS813, a crucial amino acid in the palm domain of RdRP. Molecular dynamic (MD) simulation analysis by RMSD, RMSF, and Rg parameters affirmed that RdRP complexes with compounds 7, 8, and 9 were stable and showed less deviation. Our data provide novel information on compounds 7, 8, and 9 that demonstrated their non-nucleoside and irreversible interaction capabilities to inhibit RdRp and shed new scaffolds as antivirals against SARS-CoV-2.


Assuntos
Antivirais , Plantas Medicinais , RNA Polimerase Dependente de RNA , SARS-CoV-2 , Aminoácidos , Antivirais/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Plantas Medicinais/química , RNA Polimerase Dependente de RNA/antagonistas & inibidores , SARS-CoV-2/efeitos dos fármacos , Arábia Saudita
5.
Saudi Pharm J ; 31(12): 101866, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38033749

RESUMO

In this study, The inhibitory actions of human carbonic anhydrase (CA, EC 4.2.1.1) (hCA) isoforms I, II, IX, and XII are being examined using recently synthesized substituted hydroxyl Schiff derivatives based on the quinazoline scaffold 4-22. Quinazolines 2, 3, 4, 5, 7, 10, 15, and 18 reduce the activity of hCA I isoform effectively to a Ki of 87.6-692.3 nM, which is nearly equivalent to or more potent than that of the standard drug AAZ (Ki, 250.0 nM). Similarly, quinazolines 2, 3, and 5 and quinazoline 14 effectively decrease the inhibitory activity of the hCA II isoform to a KI of 16.9-29.7 nM, comparable to that of AAZ (Ki, 12.0 nM). The hCA IX isoform activity is substantially diminished by quinazolines 2-12 and 14-21 (Ki, 8.9-88.3 nM against AAZ (Ki, 25.0 nM). Further, the activity of the hCA XII isoform is markedly inhibited by the quinazolines 3, 5, 7, 14, and 16 (Ki, 5.4-19.5 nM). Significant selectivity levels are demonstrated for inhibiting tumour-associated isoforms hCA IX over hCAI, for sulfonamide derivatives 6-15 (SI; 10.68-186.29), and 17-22 (SI; 12.52-57.65) compared to AAZ (SI; 10.0). Sulfonamide derivatives 4-22 (SI; 0.50-20.77) demonstrated a unique selectivity in the concurrent inhibition of hCA IX over hCA II compared to AAZ (SI; 0.48). Simultaneously, benzenesulfonamide derivative 14 revealed excellent selectivity for inhibiting hCA XII over hCA I (SI; 60.35), whereas compounds 5-8, 12-14, 16, and 18-22 demonstrated remarkable selectivity for hCA XII inhibitory activity over hCA II (SI; 2.09-7.27) compared to AAZ (SI; 43.86 and 2.10, respectively). Molecular docking studies additionally support 8 to hCA IX and XII binding, thus indicating its potential as a lead compound for inhibitor development.

6.
Molecules ; 28(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37894699

RESUMO

Acalabrutinib, commercially known as Calquence®, is a pharmacological molecule that has robust inhibitory activity against Bruton tyrosine kinase. The medicine in question was carefully developed by the esteemed pharmaceutical company AstraZeneca. The FDA granted authorization on 21 November 2019 for the utilization of acalabrutinib (ACB) in the treatment of small lymphocytic lymphoma (SLL) or chronic lymphocytic leukemia (CLL) in adult patients. The aim of this study was to develop a UPLC-MS/MS method that is effective, accurate, environmentally sustainable, and has a high degree of sensitivity. The methodology was specifically developed with the intention of quantifying ACB in human liver microsomes (HLMs). The methodology described above was subsequently utilized to assess the metabolic stability of ACB in HLMs in an in vitro environment. The validation procedures for the UPLC-MS/MS method in the HLMs were conducted in accordance with the bioanalytical method validation criteria established by the U.S.- DA. The utilization of the StarDrop software (version 6.6), which integrates the P450 metabolic module and DEREK software (KB 2018 1.1), was employed for the purpose of evaluating the metabolic stability and identifying potential hazardous alarms associated with the chemical structure of ACB. The calibration curve, as established by the ACB, demonstrated a linear correlation across the concentration range of 1 to 3000 ng/mL in the matrix of HLMs. The present study conducted an assessment of the accuracy and precision of the UPLC-MS/MS method in quantifying inter-day and intra-day fluctuations. The inter-day accuracy demonstrated a spectrum of values ranging from -1.00% to 8.36%, whilst the intra-day accuracy presented a range of values spanning from -2.87% to 4.11%. The t1/2 and intrinsic clearance (Clint) of ACB were determined through in vitro testing to be 20.45 min and 39.65 mL/min/kg, respectively. The analysis concluded that the extraction ratio of ACB demonstrated a moderate level, thus supporting the recommended dosage of ACB (100 mg) to be administered twice daily for the therapeutic treatment of persons suffering from B-cell malignancies. Several computational tools have suggested that introducing minor structural alterations to the butynoyl group, particularly the alpha, beta-unsaturated amide moiety, or substituting this group during the drug design procedure, could potentially enhance the metabolic stability and safety properties of novel derivatives in comparison to ACB.


Assuntos
Leucemia Linfocítica Crônica de Células B , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Benzamidas , Pirazinas
7.
Saudi Pharm J ; 31(11): 101803, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37860686

RESUMO

Spirochromanes incorporating Schiff's bases and semicarbazones 4a-e and 5a-j were synthesizedand analyzed for their potential antiproliferative activity using four human cancer cell lines (MCF-7, HCT-116, PC3, and A549). Compounds 5a, 5b and 5g possessed the highest antiproliferative activity among the tested compounds,with an IC50 range of 1.154-9.09 µM. Compound 5j selectively inhibited the PC3 cell proliferation (IC50 = 5.47 µM). Spirochromanes 5a, 5b and 5g exhibited high inhibitory activity against EGFR (IC50 = 0.116, 0.132, and 0.077 µM, respectively) and HER2 (IC50 = 0.055, 0.210 and 0.085 µM, respectively) compared with the references, erlotinib (IC50 = 0.090 and 0.038 µM, respectively) and gefitinib (IC50 = 0.052 and 0.072 µM, respectively). Cell cycle analysis and apoptosis results showed that compounds 5a, 5b and 5g arrested growth inthe S phase, and the programmed cell death induced by these compounds was an apoptotic mechanism rather than a necrotic pathway. Molecular docking studies of spirochromanes 5a, 5b and 5g to EGFR and HER2 binding sites were performed to explore the orientation mode and interaction.

8.
Molecules ; 28(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37836701

RESUMO

This study systematically investigates the molecular structure and electronic properties of 2-methoxy-4,6-diphenylnicotinonitrile, employing X-ray diffraction (XRD) and sophisticated computational methodologies. XRD findings validate the compound's orthorhombic crystallization in the P21212 space group, composed of a pyridine core flanked by two phenyl rings. Utilizing the three-dimensional Hirshfeld surface, the research decodes the molecule's spatial attributes, further supported by exhaustive statistical assessments. Key interactions, such as π-π stacking and H⋯X contacts, are spotlighted, underscoring their role in the crystal's inherent stability and characteristics. Energy framework computations and density functional theory (DFT) analyses elucidate the prevailing forces in the crystal and reveal geometric optimization facets and molecular reactivity descriptors. Emphasis is given to the exploration of frontier molecular orbitals (FMOs), aromaticity, and π-π stacking capacities. The research culminates in distinguishing electron density distributions, aromatic nuances, and potential reactivity hotspots, providing a holistic view of the compound's structural and electronic landscape. Concurrently, molecular docking investigates its interaction with the lipoprotein-associated phospholipase A2 protein. Notably, the compound showcases significant interactions with the protein's active site. Molecular dynamics simulations reveal the compound's influence on protein stability and flexibility. Although the molecule exhibits strong inhibitory potential against Lp-PLA2, its drug development prospects face challenges related to solubility and interactions with drug transport proteins.

9.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37765067

RESUMO

Lorlatinib (LOR) is a third-generation anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitor drug. The Food and Drug Administration (FDA) has granted an approval for the use of LOR as a first therapeutic intervention for individuals diagnosed with ALK-positive metastatic and advanced non-small-cell lung cancer (NSCLC). The present study outlines, for the first time, the development and validation of an innovative microwell-based spectrofluorimetric (MW-SFL) method for the quantification of LOR. The proposed method involved the enhancement of the weak native fluorescence of LOR by its micellization into the sodium lauryl sulfate (SLS) micelles. The procedures of the method were conducted in white opaque plates with 96 microwells, and the enhanced fluorescence signals were measured by a fluorescence plate reader at 405 nm after excitation at 310 nm. The measured relative fluorescence intensity (RFI) had a linear relationship with LOR concentrations in the range of 60-1600 ng mL-1. The limit of detection (LOD) and the limit of quantification (LOQ) were found to be 19 and 56 ng mL-1, respectively. The method's accuracy and precision were assessed using a recovery study; the recovery values ranged from 99.98% to 101.40%, accompanied by relative standard deviation (RSD) values of 0.42% to 1.59%. The proposed MW-SFL method combined the advantages of the intrinsically high sensitivity of the spectrofluorimetric measurement and the excellent throughput of the microwell-based approach. The results proved the method is effective in the determination of LOR in its pharmaceutical tablets, tablet dissolution testing, as well as in spiked urine with a high degree of precision and accuracy. The MW-SFL method is notable for its simple procedures and utilization of water as a solvent, as well as minimal quantities of sample solutions. These features align with its ecofriendly approach to green chemistry principles. These advantages gave the proposed MW-SFL method a high potential value for the determination of LOR in clinical and quality control laboratories.

10.
Molecules ; 28(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298748

RESUMO

Cyclin-dependent kinases (CDKs) are promising targets in chemotherapy. In this study, we report a series of 2-anilinopyrimidine derivatives with CDK inhibitory activity. Twenty-one compounds were synthesized and their CDK inhibitory and cytotoxic activities were evaluated. The representative compounds demonstrate potent antiproliferative activities toward different solid cancer cell lines and provide a promising strategy for the treatment of malignant tumors. Compound 5f was the most potent CDK7 inhibitor (IC50 = 0.479 µM), compound 5d was the most potent CDK8 inhibitor (IC50 = 0.716 µM), and compound 5b was the most potent CDK9 inhibitor (IC50 = 0.059 µM). All the compounds satisfied the Lipinski's rule of five (molecular weight < 500 Da, number of hydrogen bond acceptors <10, and octanol-water partition coefficient and hydrogen bond donor values below 5). Compound 5j is a good candidate for lead optimization because it has a non-hydrogen atom (N) of 23, an acceptable ligand efficiency value of 0.38673, and an acceptable ligand lipophilic efficiency value of 5.5526. The synthesized anilinopyrimidine derivatives have potential as anticancer agents.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Ligantes , Simulação de Acoplamento Molecular , Antineoplásicos/química , Quinases Ciclina-Dependentes , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Desenho de Fármacos , Linhagem Celular Tumoral
11.
Curr Issues Mol Biol ; 45(5): 3787-3800, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37232713

RESUMO

Mortality and morbidity caused by viruses are a global health problems. Therefore, there is always a need to create novel therapeutic agents and refine existing ones to maximize their efficacy. Our lab has produced benzoquinazolines derivatives that have proven effective activity as antiviral compounds against herpes simplex (HSV 1 and 2), coxsackievirus B4 (CVB4), and hepatitis viruses (HAV and HCV). This in vitro study was aimed at investigating the effectiveness of benzoquinazoline derivatives 1-16 against adenovirus type 7 and bacteriophage phiX174 using a plaque assay. The cytotoxicity against adenovirus type 7 was also performed in vitro, using a MTT assay. Most of the compounds exhibited antiviral activity against bacteriophage phiX174. However, compounds 1, 3, 9, and 11 showed statistically significant reductions of 60-70% against bacteriophage phiX174. By contrast, compounds 3, 5, 7, 12, 13, and 15 were ineffective against adenovirus type 7, and compounds 6 and 16 had remarkable efficacy (50%). Using the MOE-Site Finder Module, a docking study was carried out in order to create a prediction regarding the orientation of the lead compounds (1, 9, and 11). This was performed in order to investigate the activity of the lead compounds 1, 9, and 11 against the bacteriophage phiX174 by locating the ligand-target protein binding interaction active sites.

12.
Saudi Pharm J ; 31(6): 815-823, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37228321

RESUMO

Candida albicans, an opportunistic pathogen, is the most common type of fungus and represents a substantial source of human invasive disease (nosocomial infection). This category of fungi are part of our microbiota, and given the appropriate environmental conditions, it has the potential to cause both superficial and systemic infections. There is a soaring resistance against the available anticandidal agents. The purpose of this research is to investigate the activity of certain previously synthesized benzo[g]quinazolines against C. albicans in vitro by using the cup-plate diffusion method. There was a marked difference in the effectiveness of the target compounds 1-6 against the sample of C. albicans that was tested. Benzo[g]quinazolines 1 (inhibition zone = 20 mm) and 2 (inhibition zone = 22 mm) had good effects in comparison to fluconazole (inhibition zone = 26 mm). A docking study was conducted between benzo[g]quinazolines 1-6 and Candida spp. CYP51 to establish the binding mode compared with fluconazole and VT-1161 (oteseconazole) as reference medicines, and it was determined that binding at the active site of Candida spp. CYP51 occurred in the same manner. Quantitative structure-activity relationship (QSAR) investigation was performed to further characterize the identified anticandidal agents and recognize the major regulatory components governing such activity. In future studies, the benzo[g]quinazoline scaffold could serve as a model for the design and development of novel derivatives with antifungal potential.

13.
Pharmacol Rep ; 75(4): 962-978, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37210695

RESUMO

BACKGROUND: Serotype coxsackievirus B (CVB) infection has been linked to viral myocarditis, dilated cardiomyopathy, meningitis, and pancreatitis in children and young adults. As of yet, no antiviral drug has been authorized for the treatment of coxsackievirus infection. Therefore, there is perpetual demand for new therapeutic agents and the improvement of existing ones. Benzo[g]quinazolines, the subject of several well-known heterocyclic systems, have risen to prominence and played a significant role in the development of antiviral agents, particularly those for anti-coxsackievirus B4 infection. METHODS: This study investigated the cytotoxicity of the target benzo[g]quinazolines (1-16) in the BGM cells line as well as their anti-coxsackievirus B4 activity. Determination of CVB4 titers using a plaque assay. RESULTS: Most of the target benzoquinazolines exhibited antiviral activity, however, compounds 1-3 appeared to be the most effective (reduction percentages of 66.7, 70, and 83.3%, respectively). The binding mechanisms and interactions of the three most active 1-3 with the constitutive amino acids in the active site of the multi-target of coxsackievirus B4 (3Clpro and RdRp) targets were also investigated using molecular docking. CONCLUSION: The anti coxsackievirus B4 activity has resulted, and the top three active benzoquinazolines (1-3) have bonded to and interacted with the constitutive amino acids in the active region of the multi-target coxsackievirus B4 (RdRp and 3Clpro). Further research is required in the lab. to determine the exact benzoquinazolines mechanism of action.


Assuntos
Antivirais , Quinazolinas , Criança , Humanos , Antivirais/farmacologia , Antivirais/química , Simulação de Acoplamento Molecular , Linhagem Celular , RNA Polimerase Dependente de RNA
14.
Artigo em Inglês | MEDLINE | ID: mdl-37061271

RESUMO

Brimonidine is a highly selective 2-adrenoceptor agonist that lowers intraocular pressure (IOP) by decreasing aqueous humor production and increasing aqueous humor outflow via the uveoscleral route. Brimonidine is used to treat glaucoma and other eye conditions. Brimonidine is a topical medication that is used mainly to treat open-angle glaucoma and ocular hypertension in the eyelids. The purpose of this chapter is to provide a comprehensive discussion of Brimonidine's nomenclature, physiochemical properties, preparation methods, identification procedures, and numerous qualitative and quantitative analytical techniques, as well as its ADME profiles and pharmacological effects. In addition, the chapter contains numerous approaches for separating brimonidine from other medications in combination formulations utilizing chromatographic techniques and other spectroscopic approaches.


Assuntos
Glaucoma de Ângulo Aberto , Glaucoma , Humanos , Tartarato de Brimonidina/farmacologia , Tartarato de Brimonidina/uso terapêutico , Glaucoma de Ângulo Aberto/tratamento farmacológico , Agonistas alfa-Adrenérgicos/farmacologia , Agonistas alfa-Adrenérgicos/uso terapêutico , Quinoxalinas/farmacologia , Quinoxalinas/uso terapêutico , Soluções Oftálmicas/uso terapêutico , Glaucoma/tratamento farmacológico , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico
15.
Artigo em Inglês | MEDLINE | ID: mdl-37061272

RESUMO

Vandetanib is an anti-cancer drug called an antineoplastic kinase inhibitor. The FDA authorized vandetanib on April6, 2011 for the treatment of nonresectable, locally progressed, or metastatic medullary thyroid carcinoma in adults. Because Vandetanib can make the Q-T interval last longer, it shouldn't be given to people with serious heart problems like congenital long QT syndrome or heart failure that hasn't been fixed yet. This chapter provides an overview of Vandetanib's physical and molecular properties, mode of action, pharmacokinetics, and common applications. In furthermore, a detailed summary of the reported techniques of Vandetanib measurement will be provided to assist analysts in selecting the most practical approach for its estimation in routine analysis. This chapter will also explain the synthesis methods developed in the preparation of vandetanib as well as pharmacology of its. In addition, this section summarizes the analytical and characterization techniques utilized to characterize vandetanib row material.


Assuntos
Antineoplásicos , Carcinoma Neuroendócrino , Neoplasias da Glândula Tireoide , Adulto , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Neuroendócrino/tratamento farmacológico , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/patologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-37061276

RESUMO

Remdesivir, marketed under the brand name Veklury, is an antiviral drug with a broad spectrum of activity. There were various countries where the use of Remdesivir for the treatment of COVID-19 was authorized during the pandemic. Remdesivir was first designed to treat hepatitis C, but it was later tested for Ebola virus sickness and Marburg virus infections. Remdesivir is a prodrug designed to facilitate the intracellular transport of GS-441524 monophosphate and its subsequent biotransformation into GS-441524 triphosphate, a ribonucleotide analogue inhibitor of viral RNA polymerase. The objective of this chapter is to provide a comprehensive review of Remdesivir (GS-5734), including its nomenclature, physiochemical properties, preparation methods, identification procedures, numerous qualitative and quantitative analytical techniques, ADME profiles, and pharmacological effects. In addition, the chapter provides a variety of chromatographic and spectroscopic techniques for separating brimonidine from other drugs in combination formulations.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Tratamento Farmacológico da COVID-19 , Monofosfato de Adenosina/uso terapêutico , Monofosfato de Adenosina/farmacologia
17.
Medicina (Kaunas) ; 59(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36984441

RESUMO

Background and Objectives: This study presents the development and validation of the 96-microwell-based spectrofluorimetric (MW-SFL) and high performance liquid chromatography (HPLC) with fluorescence detection (HPLC-FD) methods for the quantitation of alectinib (ALC) in its bulk powder form and in urine samples. Materials and Methods: The MW-SFL was based on the enhancement of the native fluorescence of ALC by the formation of micelles with the surfactant cremophor RH 40 (Cr RH 40) in aqueous media. The MW-SFL was executed in a 96-microwell plate and the relative fluorescence intensity (RFI) was recorded by utilizing a fluorescence plate reader at 450 nm after excitation at 280 nm. The HPLC-FD involved the chromatographic separation of ALC and ponatinib (PTB), as an internal standard (IS), on a C18 column and a mobile phase composed of methanol:potassium dihydrogen phosphate pH 7 (80:20, v/v) at a flow rate of 2 mL min-1. The eluted ALC and PTB were detected by utilizing a fluorescence detector set at 365 nm for excitation and 450 nm for emission. Results: Validation of the MW-SFL and HPLC-FD analytical methods was carried out in accordance with the recommendations issued by the International Council for Harmonization (ICH) for the process of validating analytical procedures. Both methods were efficaciously applied for ALC quantitation in its bulk form as well as in spiked urine; the mean recovery values were ≥86.90 and 95.45% for the MW-SFL and HPLC-FD methods, respectively. Conclusions: Both methodologies are valuable for routine use in quality control (QC) laboratories for determination of ALC in pure powder form and in human urine samples.


Assuntos
Carbazóis , Piperidinas , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Pós
18.
Molecules ; 28(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36985590

RESUMO

Selpercatinib (SLP; brand name Retevmo®) is a selective and potent RE arranged during transfection (RET) inhibitor. On 21 September 2022, the FDA granted regular approval to SLP (Retevmo, Eli Lilly, and Company). It is considered the only and first RET inhibitor for adults with metastatic or locally advanced solid tumors with RET gene fusion. In the current experiment, a highly specific, sensitive, and fast liquid chromatography tandem mass spectrometry (LC-MS/MS) method for quantifying SLP in human liver microsomes (HLMs) was developed and applied to the metabolic stability evaluation of SLP. The LC-MS/MS method was validated following the bioanalytical methodology validation guidelines outlined by the FDA (linearity, selectivity, matrix effect, accuracy, precision, carryover, and extraction recovery). SLP was detected by a triple quadrupole detector (TQD) using a positive ESI source and multiple reaction monitoring (MRM) mode for mass spectrometric analysis and estimation of analytes ions. The IS-normalized matrix effect and extraction recovery were acceptable according to the FDA guidelines for the bioanalysis of SLP. The SLP calibration standards were linear from 1 to 3000 ng/mL HLMs matrix, with a regression equation (y = 1.7298x + 3.62941) and coefficient of variation (r2 = 0.9949). The intra-batch and inter-batch precision and accuracy of the developed LC-MS/MS method were -6.56-5.22% and 5.08-3.15%, respectively. SLP and filgotinib (FLG) (internal standard; IS) were chromatographically separated using a Luna 3 µm PFP (2) stationary phase (150 × 4.6 mm) with an isocratic mobile phase at 23 ± 1 °C. The limit of quantification (LOQ) was 0.78 ng/mL, revealing the LC-MS/MS method sensitivity. The intrinsic clearance and in vitro t1/2 (metabolic stability) of SLP in the HLMs matrix were 34 mL/min/kg and 23.82 min, respectively, which proposed an intermediate metabolic clearance rate of SLP, confirming the great value of this type of kinetic experiment for more accurate metabolic stability predictions. The literature review approved that the established LC-MS/MS method is the first developed and reported method for quantifying SLP metabolic stability.


Assuntos
Microssomos Hepáticos , Espectrometria de Massas em Tandem , Adulto , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Microssomos Hepáticos/metabolismo , Pirazóis/metabolismo , Reprodutibilidade dos Testes
19.
Curr Issues Mol Biol ; 45(3): 2409-2421, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36975526

RESUMO

Globally, rotavirus (RV) is the most common cause of acute gastroenteritis in infants and toddlers; however, there are currently no agents available that are tailored to treat rotavirus infection in particular. Improved and widespread immunization programs are being implemented worldwide to reduce rotavirus morbidity and mortality. Despite certain immunizations, there are no licensed antivirals that can attack rotavirus in hosts. Benzoquinazolines, chemical components synthesized in our laboratory, were developed as antiviral agents, and showed good activity against herpes simplex, coxsackievirus B4 and hepatitis A and C. In this research project, an in vitro investigation of the effectiveness of benzoquinazoline derivatives 1-16 against human rotavirus Wa strains was carried out. All compounds exhibited antiviral activity, however compounds 1-3, 9 and 16 showed the greatest activity (reduction percentages ranged from 50 to 66%). In-silico molecular docking of highly active compounds, which were selected after studying the biological activity of all investigated of benzo[g]quinazolines compounds, was implemented into the protein's putative binding site to establish an optimal orientation for binding. As a result, compounds 1, 3, 9, and 16 are promising anti-rotavirus Wa strains that lead with Outer Capsid protein VP4 inhibition.

20.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36902371

RESUMO

The presence of the p-aryl/cyclohexyl ring in the N-(4-aryl/cyclohexyl)-2-(pyridine-4-yl carbonyl) hydrazine carbothioamide derivative (2C) is reported to enhance the antifungal properties when compared to those of itraconazole. Serum albumins present in plasma bind and transport ligands, including pharmaceuticals. This study explored 2C interactions with BSA using spectroscopic methods such as fluorescence and UV-visible spectroscopy. In order to acquire a deeper comprehension of how BSA interacts with binding pockets, a molecular docking study was carried out. The fluorescence of BSA was quenched by 2C via a static quenching mechanism since a decrease in quenching constants was observed from 1.27 × 105 to 1.14 × 105. Thermodynamic parameters indicated hydrogen and van der Waals forces responsible for the BSA-2C complex formation with binding constants ranging between 2.91 × 105 and 1.29 × 105, which suggest a strong binding interaction. Site marker studies displayed that 2C binds to BSA's subdomains IIA and IIIA. Molecular docking studies were conducted to further comprehend the molecular mechanism of the BSA-2C interaction. The toxicity of 2C was predicted by Derek Nexus software. Human and mammalian carcinogenicity and skin sensitivity predictions were associated with a reasoning level of equivocal, inferring 2C to be a potential drug candidate.


Assuntos
Antifúngicos , Soroalbumina Bovina , Animais , Humanos , Soroalbumina Bovina/química , Simulação de Acoplamento Molecular , Hidrazinas , Termodinâmica , Piridinas , Sítios de Ligação , Espectrometria de Fluorescência , Ligação Proteica , Espectrofotometria Ultravioleta , Dicroísmo Circular , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...